Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
American Journal of Respiratory and Critical Care Medicine ; 207(10):1383, 2023.
Article in English | ProQuest Central | ID: covidwho-2316302

ABSTRACT

The American Journal of Respiratory and Critical Care Medicine· AmakATS and the American Journal of Respiratory Cell and Molecular Biology· as well as non-American Thoracic Society journals JAMA, lite Lancet Respiratory tledicine, and Cltest are reviewed in this article as outstanding studies in the field of sleep medicine that were published in 2020 and 2021. We notably highlight the influence of the coronavirus disease (COVID-19) pandemic on the provision of sleep care, significant advancements in machine learning, and the phenotyping of obstructive sleep apnea (OSA). precision health, new epidemiologic insights on the causes, effects, and treatment response of OSA, as well as improvements in our knowledge of obesity and respiratory pathophysiology in sleep.

4.
Sleep ; 45(Suppl 1):A321-A321, 2022.
Article in English | EuropePMC | ID: covidwho-1999223

ABSTRACT

Introduction Sleep difficulties and fatigue are highly prevalent, pervasive symptoms reported in patients with Post-Acute Sequelae of COVID-19 (PASC). As little is known of the predictors and severity of PASC-related sleep disturbance and intersection with fatigue, we leverage systematic data collected from the Cleveland Clinic ReCOVer Clinic for further elucidation Methods Analysis of data collected from Cleveland Clinic ReCOVer Clinic patients (February-November 2021) who completed the Patient-Reported Outcomes Measurement (PROMIS) Sleep Disturbance and PROMIS Fatigue questionnaires was performed. Data were extracted from the Cleveland Clinic COVID-19 registry and the electronic health record.PROMIS scores are standardized to the general U.S. adult population on a T-scale with mean 50±10. PROMIS sleep disturbance and fatigue T-scores ≥60 indicates at least moderate disturbance and ≥70 indicate severe disturbance. T-test and Chi-square tests were used to examine cross-group differences. Multivariable logistic regression adjusted for age, race, sex, and body mass index(kg/m2) was performed to investigate factors associated with sleep disturbance severity. Results Out of 1321, 682 patients completed the PROMIS Sleep Disturbance questionnaire with age 49.8±13.6, 75.2% female and 12.3% black race. Average T-scores were 57.7±8.3, 281 (41.2%) patients reported at least moderate sleep disturbance and 50 (7.3%) reported severe sleep disturbances. Average PROMIS Fatigue T-score was 63.0±9.2;68.6% patients reported at least moderate fatigue, 22.6% reported severe fatigue. Patients with moderate-severe compared to normal-to-mild sleep disturbances respectively had higher BMI (32.3±8.7 vs 30.9±7.5, p=0.049), were more likely of black race (40.0±10.0 vs 41.0±15.7,p=0.010), had worse eneral Anxiety Disorder (GAD)-2 questionnaires scores (2.8±2.1 vs 1.6±1.7,p<0.001), Patient Health Questionnaire (PHQ)-2 scores (2.8±2.0 vs 1.6±1.7,p<0.001) and PROMIS fatigue scores (66.7±7.8 vs 60.4±9.1,p<0.001) with no difference in age, sex, or hospitalization due to COVID-19. In the adjusted model, black race was associated with moderate-severe sleep disturbance (OR=3.42, 95%CI:1.64-7.13). Conclusion The prevalence of moderate to severe sleep disturbances reported by patients presenting for PASC was very high i.e.>40% and associated with obesity, black race and mood symptoms. Notably, after adjustment for demographics, black race conferred a 3-fold higher odds of moderate-severe sleep disturbance emphasizing the need to characterize race-specific determinants and disparities in COVID-19 survivors. Support (If Any)  

5.
JAMA Netw Open ; 4(11): e2134241, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1508587

ABSTRACT

Importance: The influence of sleep-disordered breathing (SDB) and sleep-related hypoxemia in SARS-CoV-2 viral infection and COVID-19 outcomes remains unknown. Controversy exists regarding whether to continue treatment for SDB with positive airway pressure given concern for aerosolization with limited data to inform professional society recommendations. Objective: To investigate the association of SDB (identified via polysomnogram) and sleep-related hypoxia with (1) SARS-CoV-2 positivity and (2) World Health Organization (WHO)-designated COVID-19 clinical outcomes while accounting for confounding including obesity, underlying cardiopulmonary disease, cancer, and smoking history. Design, Setting, and Participants: This case-control study was conducted within the Cleveland Clinic Health System (Ohio and Florida) and included all patients who were tested for COVID-19 between March 8 and November 30, 2020, and who had an available sleep study record. Sleep indices and SARS-CoV-2 positivity were assessed with overlap propensity score weighting, and COVID-19 clinical outcomes were assessed using the institutional registry. Exposures: Sleep study-identified SDB (defined by frequency of apneas and hypopneas using the Apnea-Hypopnea Index [AHI]) and sleep-related hypoxemia (percentage of total sleep time at <90% oxygen saturation [TST <90]). Main Outcomes and Measures: Outcomes were SARS-CoV-2 infection and WHO-designated COVID-19 clinical outcomes (hospitalization, use of supplemental oxygen, noninvasive ventilation, mechanical ventilation or extracorporeal membrane oxygenation, and death). Results: Of 350 710 individuals tested for SARS-CoV-2, 5402 (mean [SD] age, 56.4 [14.5] years; 3005 women [55.6%]) had a prior sleep study, of whom 1935 (35.8%) tested positive for SARS-CoV-2. Of the 5402 participants, 1696 were Black (31.4%), 3259 were White (60.3%), and 822 were of other race or ethnicity (15.2%). Patients who were positive vs negative for SARS-CoV-2 had a higher AHI score (median, 16.2 events/h [IQR, 6.1-39.5 events/h] vs 13.6 events/h [IQR, 5.5-33.6 events/h]; P < .001) and increased TST <90 (median, 1.8% sleep time [IQR, 0.10%-12.8% sleep time] vs 1.4% sleep time [IQR, 0.10%-10.8% sleep time]; P = .02). After overlap propensity score-weighted logistic regression, no SDB measures were associated with SARS-CoV-2 positivity. Median TST <90 was associated with the WHO-designated COVID-19 ordinal clinical outcome scale (adjusted odds ratio, 1.39; 95% CI, 1.10-1.74; P = .005). Time-to-event analyses showed sleep-related hypoxia associated with a 31% higher rate of hospitalization and mortality (adjusted hazard ratio, 1.31; 95% CI, 1.08-1.57; P = .005). Conclusions and Relevance: In this case-control study, SDB and sleep-related hypoxia were not associated with increased SARS-CoV-2 positivity; however, once patients were infected with SARS-CoV-2, sleep-related hypoxia was an associated risk factor for detrimental COVID-19 outcomes.


Subject(s)
COVID-19 , Cause of Death , Hospitalization , Severity of Illness Index , Sleep Apnea Syndromes/complications , Aged , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Case-Control Studies , Continuous Positive Airway Pressure , Delivery of Health Care, Integrated , Extracorporeal Membrane Oxygenation , Female , Florida , Hospital Mortality , Humans , Hypoxia , Logistic Models , Male , Middle Aged , Odds Ratio , Ohio , Respiration, Artificial , Risk Factors , SARS-CoV-2 , Sleep , Sleep Apnea Syndromes/pathology , Sleep Apnea Syndromes/therapy
6.
Signal Transduct Target Ther ; 6(1): 292, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1333904

ABSTRACT

Sex differences in the susceptibility of SARS-CoV-2 infection and severity have been controversial, and the underlying mechanisms of COVID-19 in a sex-specific manner remain understudied. Here we inspected sex differences in SARS-CoV-2 infection, hospitalization, admission to the intensive care unit (ICU), sera inflammatory biomarker profiling, and single-cell RNA-sequencing (scRNA-seq) profiles across nasal, bronchoalveolar lavage fluid (BALF), and peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with varying degrees of disease severities. Our propensity score-matching observations revealed that male individuals have a 29% elevated likelihood of SARS-CoV-2 positivity, with a hazard ratio (HR) 1.32 (95% confidence interval [CI] 1.18-1.48) for hospitalization and HR 1.51 (95% CI 1.24-1.84) for admission to ICU. Sera from male patients at hospital admission had elevated neutrophil-lymphocyte ratio and elevated expression of inflammatory markers (C-reactive protein and procalcitonin). We found that SARS-CoV-2 entry factors, including ACE2, TMPRSS2, FURIN, and NRP1, have elevated expression in nasal squamous cells from male individuals with moderate and severe COVID-19. We observed male-biased transcriptional activation in SARS-CoV-2-infected macrophages from BALF and sputum samples, which offers potential molecular mechanism for sex-biased susceptibility to viral infection. Cell-cell interaction network analysis reveals potential epithelium-immune cell interactions and immune vulnerability underlying male-elevated disease severity and mortality in COVID-19. Mechanistically, monocyte-elevated expression of Toll-like receptor 7 (TLR7) and Bruton tyrosine kinase (BTK) is associated with severe outcomes in males with COVID-19. In summary, these findings provide basis to decipher immune responses underlying sex differences and designing sex-specific targeted interventions and patient care for COVID-19.


Subject(s)
COVID-19/immunology , Cell Communication/immunology , Leukocytes, Mononuclear/immunology , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Sex Characteristics , Adult , Aged , COVID-19/pathology , Female , Humans , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Nasal Mucosa/pathology , Single-Cell Analysis
7.
Alzheimers Res Ther ; 13(1): 110, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1262514

ABSTRACT

BACKGROUND: Dementia-like cognitive impairment is an increasingly reported complication of SARS-CoV-2 infection. However, the underlying mechanisms responsible for this complication remain unclear. A better understanding of causative processes by which COVID-19 may lead to cognitive impairment is essential for developing preventive and therapeutic interventions. METHODS: In this study, we conducted a network-based, multimodal omics comparison of COVID-19 and neurologic complications. We constructed the SARS-CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR-Cas9-based genetic assay results and compared network-based relationships therein with those of known neurological manifestations using network proximity measures. We also investigated the transcriptomic profiles (including single-cell/nuclei RNA-sequencing) of Alzheimer's disease (AD) marker genes from patients infected with COVID-19, as well as the prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected with SARS-CoV-2. RESULTS: We found significant network-based relationships between COVID-19 and neuroinflammation and brain microvascular injury pathways and processes which are implicated in AD. We also detected aberrant expression of AD biomarkers in the cerebrospinal fluid and blood of patients with COVID-19. While transcriptomic analyses showed relatively low expression of SARS-CoV-2 entry factors in human brain, neuroinflammatory changes were pronounced. In addition, single-nucleus transcriptomic analyses showed that expression of SARS-CoV-2 host factors (BSG and FURIN) and antiviral defense genes (LY6E, IFITM2, IFITM3, and IFNAR1) was elevated in brain endothelial cells of AD patients and healthy controls relative to neurons and other cell types, suggesting a possible role for brain microvascular injury in COVID-19-mediated cognitive impairment. Overall, individuals with the AD risk allele APOE E4/E4 displayed reduced expression of antiviral defense genes compared to APOE E3/E3 individuals. CONCLUSION: Our results suggest significant mechanistic overlap between AD and COVID-19, centered on neuroinflammation and microvascular injury. These results help improve our understanding of COVID-19-associated neurological manifestations and provide guidance for future development of preventive or treatment interventions, although causal relationship and mechanistic pathways between COVID-19 and AD need future investigations.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Alzheimer Disease/genetics , Brain , Endothelial Cells , Humans , Membrane Proteins , RNA-Binding Proteins , SARS-CoV-2
8.
Front Neurosci ; 15: 606926, 2021.
Article in English | MEDLINE | ID: covidwho-1102486

ABSTRACT

The clinical characteristics and biological effects on the nervous system of infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain poorly understood. The aim of this study is to advance epidemiological and mechanistic understanding of the neurological manifestations of coronavirus disease 2019 (COVID-19) using stroke as a case study. In this study, we performed a meta-analysis of clinical studies reporting stroke history, intensive inflammatory response, and procoagulant state C-reactive protein (CRP), Procalcitonin (PCT), and coagulation indicator (D-dimer) in patients with COVID-19. Via network-based analysis of SARS-CoV-2 host genes and stroke-associated genes in the human protein-protein interactome, we inspected the underlying inflammatory mechanisms between COVID-19 and stroke. Finally, we further verified the network-based findings using three RNA-sequencing datasets generated from SARS-CoV-2 infected populations. We found that the overall pooled prevalence of stroke history was 2.98% (95% CI, 1.89-4.68; I 2=69.2%) in the COVID-19 population. Notably, the severe group had a higher prevalence of stroke (6.06%; 95% CI 3.80-9.52; I 2 = 42.6%) compare to the non-severe group (1.1%, 95% CI 0.72-1.71; I 2 = 0.0%). There were increased levels of CRP, PCT, and D-dimer in severe illness, and the pooled mean difference was 40.7 mg/L (95% CI, 24.3-57.1), 0.07 µg/L (95% CI, 0.04-0.10) and 0.63 mg/L (95% CI, 0.28-0.97), respectively. Vascular cell adhesion molecule 1 (VCAM-1), one of the leukocyte adhesion molecules, is suspected to play a vital role of SARS-CoV-2 mediated inflammatory responses. RNA-sequencing data analyses of the SARS-CoV-2 infected patients further revealed the relative importance of inflammatory responses in COVID-19-associated neurological manifestations. In summary, we identified an elevated vulnerability of those with a history of stroke to severe COVID-19 underlying inflammatory responses (i.e., VCAM-1) and procoagulant pathways, suggesting monotonic relationships, thus implicating causality.

9.
JAMA Netw Open ; 4(2): e210369, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1084243

ABSTRACT

Importance: There is limited evidence regarding early treatment of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to mitigate symptom progression. Objective: To examine whether high-dose zinc and/or high-dose ascorbic acid reduce the severity or duration of symptoms compared with usual care among ambulatory patients with SARS-CoV-2 infection. Design, Setting, and Participants: This multicenter, single health system randomized clinical factorial open-label trial enrolled 214 adult patients with a diagnosis of SARS-CoV-2 infection confirmed with a polymerase chain reaction assay who received outpatient care in sites in Ohio and Florida. The trial was conducted from April 27, 2020, to October 14, 2020. Intervention: Patients were randomized in a 1:1:1:1 allocation ratio to receive either 10 days of zinc gluconate (50 mg), ascorbic acid (8000 mg), both agents, or standard of care. Outcomes: The primary end point was the number of days required to reach a 50% reduction in symptoms, including severity of fever, cough, shortness of breath, and fatigue (rated on a 4-point scale for each symptom). Secondary end points included days required to reach a total symptom severity score of 0, cumulative severity score at day 5, hospitalizations, deaths, adjunctive prescribed medications, and adverse effects of the study supplements. Results: A total of 214 patients were randomized, with a mean (SD) age of 45.2 (14.6) years and 132 (61.7%) women. The study was stopped for a low conditional power for benefit with no significant difference among the 4 groups for the primary end point. Patients who received usual care without supplementation achieved a 50% reduction in symptoms at a mean (SD) of 6.7 (4.4) days compared with 5.5 (3.7) days for the ascorbic acid group, 5.9 (4.9) days for the zinc gluconate group, and 5.5 (3.4) days for the group receiving both (overall P = .45). There was no significant difference in secondary outcomes among the treatment groups. Conclusions and Relevance: In this randomized clinical trial of ambulatory patients diagnosed with SARS-CoV-2 infection, treatment with high-dose zinc gluconate, ascorbic acid, or a combination of the 2 supplements did not significantly decrease the duration of symptoms compared with standard of care. Trial Registration: ClinicalTrials.gov Identifier: NCT04342728.


Subject(s)
Ascorbic Acid/therapeutic use , COVID-19 Drug Treatment , Dietary Supplements , Zinc/therapeutic use , Adult , Ambulatory Care , Antioxidants/therapeutic use , COVID-19/complications , Cough/drug therapy , Cough/etiology , Dyspnea/drug therapy , Dyspnea/etiology , Fatigue/drug therapy , Fatigue/etiology , Female , Fever/drug therapy , Fever/etiology , Gluconates/therapeutic use , Humans , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Standard of Care , Trace Elements/therapeutic use , Treatment Outcome
10.
ChemRxiv ; 2020 Jul 02.
Article in English | MEDLINE | ID: covidwho-1027422

ABSTRACT

The global Coronavirus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of co-existing medical conditions while the underlying mechanisms remain unclear. Furthermore, there are no proven effective therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, diseases manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measure revealed underlying pathogenesis for broad COVID-19-associated manifestations. Multi-modal analyses of single-cell RNA-sequencing data showed that co-expression of ACE2 and TMPRSS2 was elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn's disease patients compared to uninflamed tissues, revealing shared pathobiology by COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicated that COVID-19 shared intermediate inflammatory endophenotypes with asthma (including IRAK3 and ADRB2). To prioritize potential treatment, we combined network-based prediction and propensity score (PS) matching observational study of 18,118 patients from a COVID-19 registry. We identified that melatonin (odds ratio (OR) = 0.36, 95% confidence interval (CI) 0.22-0.59) was associated with 64% reduced likelihood of a positive laboratory test result for SARS-CoV-2. Using PS-matching user active comparator design, melatonin was associated with 54% reduced likelihood of SARS-CoV-2 positive test result compared to angiotensin II receptor blockers or angiotensin-converting enzyme inhibitors (OR = 0.46, 95% CI 0.24-0.86).

11.
PLoS Biol ; 18(11): e3000970, 2020 11.
Article in English | MEDLINE | ID: covidwho-914191

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of coexisting medical conditions, while the underlying mechanisms remain unclear. Furthermore, there are no approved therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, disease manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measurement revealed underlying pathogenesis for broad COVID-19-associated disease manifestations. Analyses of single-cell RNA sequencing data show that co-expression of ACE2 and TMPRSS2 is elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn disease patients compared to uninflamed tissues, revealing shared pathobiology between COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicate that COVID-19 shares an intermediate inflammatory molecular profile with asthma (including IRAK3 and ADRB2). To prioritize potential treatments, we combined network-based prediction and a propensity score (PS) matching observational study of 26,779 individuals from a COVID-19 registry. We identified that melatonin usage (odds ratio [OR] = 0.72, 95% CI 0.56-0.91) is significantly associated with a 28% reduced likelihood of a positive laboratory test result for SARS-CoV-2 confirmed by reverse transcription-polymerase chain reaction assay. Using a PS matching user active comparator design, we determined that melatonin usage was associated with a reduced likelihood of SARS-CoV-2 positive test result compared to use of angiotensin II receptor blockers (OR = 0.70, 95% CI 0.54-0.92) or angiotensin-converting enzyme inhibitors (OR = 0.69, 95% CI 0.52-0.90). Importantly, melatonin usage (OR = 0.48, 95% CI 0.31-0.75) is associated with a 52% reduced likelihood of a positive laboratory test result for SARS-CoV-2 in African Americans after adjusting for age, sex, race, smoking history, and various disease comorbidities using PS matching. In summary, this study presents an integrative network medicine platform for predicting disease manifestations associated with COVID-19 and identifying melatonin for potential prevention and treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Melatonin/administration & dosage , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Datasets as Topic , Host-Pathogen Interactions/genetics , Humans , Pandemics , Transcriptome
12.
J Gen Intern Med ; 35(11): 3293-3301, 2020 11.
Article in English | MEDLINE | ID: covidwho-746846

ABSTRACT

BACKGROUND: Understanding the impact of the COVID-19 pandemic on healthcare workers (HCW) is crucial. OBJECTIVE: Utilizing a health system COVID-19 research registry, we assessed HCW risk for COVID-19 infection, hospitalization, and intensive care unit (ICU) admission. DESIGN: Retrospective cohort study with overlap propensity score weighting. PARTICIPANTS: Individuals tested for SARS-CoV-2 infection in a large academic healthcare system (N = 72,909) from March 8-June 9, 2020, stratified by HCW and patient-facing status. MAIN MEASURES: SARS-CoV-2 test result, hospitalization, and ICU admission for COVID-19 infection. KEY RESULTS: Of 72,909 individuals tested, 9.0% (551) of 6145 HCW tested positive for SARS-CoV-2 compared to 6.5% (4353) of 66,764 non-HCW. The HCW were younger than the non-HCW (median age 39.7 vs. 57.5, p < 0.001) with more females (proportion of males 21.5 vs. 44.9%, p < 0.001), higher reporting of COVID-19 exposure (72 vs. 17%, p < 0.001), and fewer comorbidities. However, the overlap propensity score weighted proportions were 8.9 vs. 7.7 for HCW vs. non-HCW having a positive test with weighted odds ratio (OR) 1.17, 95% confidence interval (CI) 0.99-1.38. Among those testing positive, weighted proportions for hospitalization were 7.4 vs. 15.9 for HCW vs. non-HCW with OR of 0.42 (CI 0.26-0.66) and for ICU admission: 2.2 vs. 4.5 for HCW vs. non-HCW with OR of 0.48 (CI 0.20-1.04). Those HCW identified as patient facing compared to not had increased odds of a positive SARS-CoV-2 test (OR 1.60, CI 1.08-2.39, proportions 8.6 vs. 5.5), but no statistically significant increase in hospitalization (OR 0.88, CI 0.20-3.66, proportions 10.2 vs. 11.4) and ICU admission (OR 0.34, CI 0.01-3.97, proportions 1.8 vs. 5.2). CONCLUSIONS: In a large healthcare system, HCW had similar odds for testing SARS-CoV-2 positive, but lower odds of hospitalization compared to non-HCW. Patient-facing HCW had higher odds of a positive test. These results are key to understanding HCW risk mitigation during the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Delivery of Health Care, Integrated/methods , Health Personnel/statistics & numerical data , COVID-19/prevention & control , Case-Control Studies , Female , Florida/epidemiology , Humans , Male , Ohio/epidemiology , Registries , Retrospective Studies , Risk Assessment , SARS-CoV-2
13.
Cleve Clin J Med ; 2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-623474

ABSTRACT

To date, there are no effective antiviral medications for COVID-19. Drug repurposing, a strategy that uses existing drugs, offers potential prevention and treatment options for COVID-19. We discuss one treatment strategy that combines anti-inflammatory (melatonin) and antiviral (toremifene) agents for patients infected with SARS-CoV-2 from network medicine-based findings. We also describe the pathobiology and immunologic characteristics of COVID-19 and highlight the rationale of combination drug treatment to rescue the pulmonary and cardiovascular conditions resulting from COVID-19. A preliminary analysis reveals a high potential for the synergistic effects of melatonin and toremifene to reduce viral infection and replication, and the aberrant host inflammatory responses, offering strong biologic plausibility as an effective therapy for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL